Lecture by J Rinzel Oct 4, 2007 in Comptl Modeling of Neuronal Systems

1. The two alternative forced choice task (TAFC)

Subject is shown one of two stimuli drawn at random, must respond by pushing L or R
button. Simple case: visual pattern of dots, fraction ¢ < 1 moving either to left (cond.
1) or right (cond. 2), 1 — ¢ moving randomly; ¢ adjusts difficulty.
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Bill Newsome

e Behavioral measures: reaction time (RT) distribution, error rate (ER).

e Neural measures: fMRI (humans), direct recordings in visual processing and motor

areas (monkeys: MT, LIP, FEF).
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Decision: accumulating evidence over time... for making the decision.
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Probabilistic Decision Making

by Slow Reverberation in Cortical Circuits

Xiao-Jing Wang
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Features:

» motion-selective populns

* slow reverberation and integration
— NMDA syns

* WTA competition — feedback inhib’n

* random responses

« within group connections, w, , are stronger
*input |, g is from MT = noisy.



Membrane potential (mV)

Elements of cell-based network model.
Wang 2002, Wong&Wang 2006

Point neurons, LIF.
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Voltage-clamp: V= constant (say at -60 mV)
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Figure 2. Model Reproduces Salient Charac-
teristics of Decision-Correlated Meural Activ-
ity in LIP

Laft, neurons in group A; right, neurons in
group B. Three trials are displayed with the
signal's coharence ¢’ = 0% (bottom), 12.6%
[midkdle), and 51.2% (top). In all three cases,
the attractor A wins the compstition and
therefore the network's choice is said to be
A [correct decision for ¢ > 0%). Similar to
the neural data from LIP, thers is a slow time
course of activity in group A, with the ramping
slope increasing with the signal strength.
Maoreover, ewen when the coherance is zero,
the firing pattemns of the two neural groups
diverge dramatically over time during the
stimulation, leading to a categorical (binary)
decision formed by the network. The inhibi-
tory population,which doas not receive direct
stimulation but is recruited by pyramidal
calls, also shows ramping activity (bottom),
and tha winnar- tak-a aII -:umpetrtlun results

sistent a-:'tmtg,r in group A dunng ﬂ1e mne-
monic delay period, with a level independant
of the stimulus strength sm:uree the sharttem

3 trials, stim durn=1 sec,

increasing C’;

In each case populn #1
wins competition =» correct choice if ¢’>0.

* slow ramping in E and | populns

* ramp speed increases w/ C’

* low spont activity, 2 Hz

* short-term memory, stores info for dec’n,

after stim is off

* For ¢’=0, there’s still choice made... TAFC...
model has LIP making a decision based on
MT input.
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Decision dynamics for ¢’'=0

« time integral of input correlates
with decision

* populn rates increase together,
then split

* in decision space, move along
1:1 then migrate toward one of
the attractors

« in C: histogram over many trials
of integral of s,(t)-s,(t). Blue if
pop 2 (B) is winner or red if popul
1 (A) is winner. BUT lots of
overlap = in large # of trials A
wins even if integral is < O.

* From C — suggests that external
noise is not major source of
stochasticity... still get 50:50 and
same behavior if set 6=0; noise
from background (2400 Hz)
dominates. .. internal brain noise not
from stimulus dominates... weak
diff’ce in mean p,- p, affects the
bias.

(JR: but note, no correlations
assumed in inputs.)
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Performance ... over C’

» neurometiric fns comparable to
psychometric fns of trained monkeys
« fit by Weibull dist'n:

% correct = 1-0.5%exp[-(c’/a) F]
a =¢’ @ 82% correct and B=slope.

model gives 0=9.2% B=1.5 (expt: 6%, 1.7

from Roitman&Shadlen 2002, 15%, 1.1 from
Shadlen&Newsome, 2001)

Time courses:

* diverge faster for greater ¢’

» small ¢’: chosen popul has similar response
whether correct or error trial

* larger ¢’: response to preferred is smaller on
error trial than correct (even though it wins its
getting less input than on correct trial) — and
slower...
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2 sec durn...
rate reaches threshold, set at 15 Hz.

Reaction time task

but “decision” is made if a populn

* ¢’ larger =» shorter decision time
» more variable DT for smaller ¢’ (2
histograms and plot, lower right)

* in B, neurometric fn — shows better
perf'ce from reaction time in some
range of ¢'... (0g;=8.4% vs 10.4%
for 1sec) ... system takes more
than 1 sec to decide in some trials;
comparable to expts

» <DT> drops linearly w/ log(c’) over
certain range.

» std dev drops w/ <DT> ... scalar?
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Dec’'n Making in model requires
adequate NMDA strength and
slow recurrent connections.

«Control case: w,=1.7

sreduced w, means weaker ramping, loss
of memory storage and reduced ability
for categorical decision (¢c’=1.6%, popul'n
rates are similar)

* in B, increased w,=1.8 leads to faster
ramping but less performance in RT...
Left: perfce 72% - 60%

Right: perfce vs ¢'...0=8,4% = a=15.6%



Spiking neuronal network model
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Reduced model for DM and RT task.
Wong & Wang, 2006
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All time constants are fast except for NMDA:
T, T ampa™ 218, T gapa=d MS T \pa=100 ms
+ empirical observation: firing rate NS = const

=>Rapid equilibrium for all var’s except Syypa ;> i=1,2.
(call them S, ,)

Treat S , as param’s in other eqns and get their steady

states as fns of S, ... then substitute into ode’s for S ,
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Analyze w/ phase plane methods...



Decision phase plane

Memory of a choice during delay
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Biased competition, ¢’ >0
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Reaction time task...
behaves similar to experimental results and
cell-based network
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Figure 2.  Time course with two different motion strengths. Motion coherence of 0% (black
traces) and 51.2% (light gray traces) each with 10 sample trials. Firing rates that ramp upward
(bold traces) are for saccades made toward the RF of the neuron, whereas downward (dashed
traces) are for saccades away from RF. Ramping is steaper for higher coherence level. The
prescribed threshold is fixed at 15 Hz. Once the firing rate crosses the threshold, a decision is
made, and the decision time is the time it takes fram stimulus onset (0 ms) until the threshold
is crossed. The reaction time is defined as the decision time plus a nondecision latency of 100 ms.
The bold horizontal line at the top of the figure denotes the duration, at zero coherence, where
the firing rates toward and away from RF are indistinquishable.
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Figure 3.  Performance and reaction time of models and the experiment of Roitman and

Shadlen (2002). First column, Psychometric data from experiment and the models (data are fit

circles joined by dashed lines, Mean rea-ftiun af errortrials; filled circles, correct trials. oy e
(.008 nA. Experimental data are adapted from Mazurek et al. (2003).




How get slow integ’'n ramp if T ;px= 100 ms ?

Recurrent excitation prolongs integration time
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Figure 6.  Decision time and local dynamics in the vicinity of a saddle point. Zero coherence anetworkzl SeC and TAMPAZSHIS, I'WreC:O-OOS
level from A to €. A, Longer reaction time for smaller stimulus strength oy Error bars indicate
SD. B, Typical time courses: ramping is faster for larger stimulus strength, p,. €, Time constants

of saddle-like unstable steady state with different poy. For g = 17 Hz, 7y, s larger than If W =] fine_tunin ' then T =00
T, nstabier Wereas the opposite is true for pu, << 17 Hz. D, Time constants of the unstablesaddle rec ( g ) network
as function of coherence level ¢’ (j, fixed at 30 Hz). The unstable time constant is essentially —> Perfect 1ntegrat0r

constant upto ¢’ ~ 70%. The sudden increase in 7., happens just before the bifurcation
point at which the saddle coalesces with the less favored attractor and disappears (see Fig. 5).



Effect of stimulus strength

If stimulus is too strong or too weak, lose ability for discrimination.
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Figure 10.  Bifurcation diagram of a selective population with stimulus strength g, as pa-
rameter (¢" = 0%). Bold lines, Stable steady states; dashed lines, saddle steady states. Spon-
taneous state before stimulus presentation s denoted by the filled square. Witha g1, = 30 Hz
stimulus, the spontaneous stable state loses stability, and a saddle steady state appears (open
square). The state either goes toward the upper or lower stable state (filled circles). The popu-
lation wins the competition if the upper branch is chosen, and loses otherwise. When stimulus
is removed, hysteresis of the upper stable branch allows the activity to persist (memory storage
of a decision choice). Arrow with an asterisk, Point where spontaneous state loses stability.
Arrow with double asterisks, Saddle point turns into an attractor.
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Adequate recurrent NMDA needed for delayed DM
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Figure 12.  Distinct modes of operation in the two parameter space with zero coherence. In
general, there are three types of regions. Bistable (red) region, A symmetricand two asymmet-
ric attractors coexist; blue competition region, one saddle with two asymmetric competing
attractors; monostable region, only one attractor. Depending on the strength of recurment exc-
tationw ., the network responds to a stimulus (of suitable intensity e, Jin four different ways,
shown as reqimes |, I, Ill, IV in insets. Regime | and |l do not support working memaory (of
decision). Regime |, No decision making nor memory. Regime I, The network can praduce a
binary decision during stimulation but cannot store it in working memory. Regime |1, The
network is capable of both decision-making computation and working memory (our standard
parameter set). Regime [V, Forany pu,,, thereis always astable symmetricstable state. Dark and
dashed branches denote loci of stable and unstable steady states, respectively. A and AS are
|abels for branches with symmetric and asymmetric steady states, respectively.
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Larger AMPA/NMDA shortens RT but
compromises performance
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Figure 7.  Dependence of decision-making behavior on the AMPA:NMDA ratio at recurrent
synapses. A, Typical time courses: faster ramping neural activity at larger AMPA:NMDA ratios.
Top black {gray) horizontal bar denotes the duration where the firing rates are not distinguish-
able [i.e., the trajectory lies along the stable manifold of the saddle point, when AMPA:NMDAis
35:65 (0:100)]. B, Reactiontime is shorter with a higher AMP A:NMDA ratio. €, The performance,
however, becomes less accurate. Accuracy data arefitted by a Weibull function. D, For ¢’ = 0%,
a higher AMPA:NMDA ratio decreases the reaction time for the entire range of stimulus
strengths . x-axis, Difference between pug and g, which is the bifurcation point at which
the saddle steady state appears and whose value depends on the AMPA:NMDA ratio. Cand D
have the same symbolic notations as in 8. Error bars indicate $D.



Features/Issues of Slow Reverberating Attractor Networks —
XJ Wang

« Competition via inhibition.

* Slow buildup w/ NMDA.  w/ tyypa = 100 ms, slow integration time
(sec) is a dynamic phenomena ... look at reduced model.

» Model gives behavioral perf'ce and RTs like expts.

* Need to have memory storage, after stim is off ... not in the usual
stim-dependent attractor.

» Cell-based network... or reduced 2-var mean-field

» Drift-Diffusion model or “Integrate-and-decide”:
» decision is made when a threshold is reached... not able to
hold a memory for delay task
* to get long integ’n time need fine tuning



